Используемые данные при прогнозировании пожаров. Прогнозирование обстановки при угрозе и возникновении чрезвычайных ситуаций - прогнозирование пожарной обстановки

Прогнозирование и оценка пожарной обстановки в зданиях выражается в определении основных параметров пожара во времени и пространстве.

В начале проводиться оценка и прогнозирование обстановки в горящем помещении (в помещениях), а затем переходят к анализу возможной ее динамики с учетом влияния параметров сосредоточения и введения сил и средств.

Во всех случаях при тушении пожаров в зданиях прогнозируется три параметра развития пожара:

площадь пожара;

температурный режим в объеме горящего помещения (помещений);

газообмен при развитии пожара в помещении (помещениях).

При прогнозировании площади пожара в данном помещении основным параметром, определяющим ее величину во времени, является линейная скорость распространения горения v л, м/мин, которая является функцией пожарной нагрузки q п, коэффициента условий газообмена К г и высота помещений h:

v л = f(q п, К г, h)

В настоящее время пользуются усредненными значениями величин v л, полученными на основе математико-статистического анализа - описаний реальных пожаров.

При прогнозировании температуры необходимо иметь в виду, что в процессе свободного развития пожара может быть: нарастание температуры, установившейся режим и снижение температуры.

Установившийся режим наступает тогда, когда расход уходящих газов из горящего помещения равен сумме расхода поступающего воздуха и продуктов сгорания. Такое положение наступает при установившемся расположении нейтральной зоне в объеме горящего помещения (помещений) - плоскости, которой внутреннее избыточное давление равно атмосферному. Ниже нейтральной зоны давление меньше атмосферного, а поэтому в эту часть объема помещения будет приток наружного воздуха. Выше нейтральной зоны давление больше атмосферного. Это приводит к тому, что огонь и нагретые продукты горения будут распространяться, в первую очередь, в ту часть объема горящего помещения, которая располагается выше нейтральной зоны. Следовательно, очень важно при прогнозировании и оценке пожарной обстановки в отдельном помещении или здании в целом определить место расположения нейтральной зоны визуально на данный момент времени или аналитически с учетом возможной динамики пожара.

При наличии одного отверстия в ограждающих конструкциях горящего помещения нейтральная зона будет располагаться примерно на высоте 1/3 отверстий проема. При прогнозировании развития пожара в здании в целом нужно учитывать, что основными путями распространения огня в гражданских и промышленных зданиях могут быть наружные и внутренние поверхности сгораемых конструкций (стены, перегородки, перекрытия, крыши); проемы и различные конструкции в конструктивных элементах; лестничные клетки, шахты подъемников (лифты), вентиляционные каналы. Последние два вида путей являются и основными путями распространения дыма при пожаре в здании.

Преобладающее направление распространения огня и дыма при развитии пожара по различным схемам будет зависеть от степени огнестойкости, назначения и этажности здания, а также от планировки и компоновки помещений в них. Так, в одноэтажных зданиях первой степени огнестойкости преобладающим направлением распространения огня будет горизонтальное по поверхности пожарной нагрузки.

При пожарах в многоэтажных зданиях первой, второй, третьей степеней огнестойкости преобладающим направлением распространения огня можно также считать горизонтальное и внутри конструкций с воздушными конструкциями, особенно при коридорной системе. Однако в этих зданиях огонь может распространяться выше и ниже расположенные помещения по отношению к горящему, через различные отверстия в стенах и перекрытиях, по шахтам лестничных клеток и лифтов, по вентиляционным каналам.

В защищенных от возгорания зданиях 4-й степени огнестойкости огонь, преимущественно, также распространяется в горизонтальном направлении, но в вертикальном направлении опасность распространения огня здесь будет больше, нежели в зданиях 1-, 2-, 3-й степеней огнестойкости. При пожарах в зданиях 4-й степени огнестойкости преобладающим направлением распространения огня может быть вертикальное (вверх). Основными путями распространения дыма при пожарах в зданиях всегда будут вертикальные.

Увеличение интенсивности горения, распространению огня и дыма, при развитии пожара в здании может способствовать обрушение строительных конструкций.

Потери несущей способности в условиях пожара может происходить под действием температуры или в следствии уменьшения сечения конструкций за счет ее выгорания.

При рассмотрении оценки фактической степени огнестойкости конструкций, при тушении пожара в здании могут приниматься ошибочные решения. В практике имели место случаи, когда силы и средства выводятся с занятых позиций при отсутствии угрозы обрушения конструкций, и на оборот, а не своевременно не выводятся при создавшейся угрозе обрушения, что в некоторых случаях приводит к гибели личного состава.

Руководитель тушения пожара ориентируясь на нормативный предел огнестойкости, иногда (при большом пределе огнестойкости) не выделяет силы и средства на защиту конструкций, которые фактически оказываются в более жестких условиях, чем предусмотрено нормами, и могут потерять несущую способность.

При определении поведения строительных в реальных условиях нужно знать характерные признаки, предшествующие обрушению конструкций.

Так, например обрушению железобетонных конструкций обычно предшествует образование прогиба и трещин. Обрушение деревянных конструкций, защищенных слоем штукатурки, предшествует отслаивание штукатурки и т.п..

На строительные конструкции могут воздействовать различные динамические и статические временные нагрузки (падение вышележащих конструкций, ударная волна, образующаяся при взрыве, скопление личного состава, большое количество воды и т.д.).

Исходя из факторов, определяющих процесс развития пожара по различным схемам, можно сделать следующие выводы: наибольшая площадь пожара и зоны задымления возможна при развитии пожара по первой и второй схемам, наименьшая по третьей. При этом общая площадь пожара в здании определяется как сумма площадей во всех горящих помещениях.

Как показывает практика борьбы с пожарами в зданиях после распространения огня в вертикальном направлении (вверх), огонь начинает преимущественно распространяться по помещениям этажей. При этом характер распространения огня по помещениям этажей, как правило, будет односторонним или двусторонним. В некоторых случаях огонь может распространяться во все стороны (по кругу) или в каком-либо углу. Но с течением времени распространение огня будет двусторонним или односторонним. При этом ширина фронта распространения огня будет равна ширине помещения, в котором распространяется огонь.

Прогнозирование обстановке на
пожаре. Основные расчетные соотношения
1.
План лекции
Введение.
Прогнозирование обстановке на
пожаре. Ее цели и задачи.
2.
2. Основные расчётные
соотношения.

Прогноз последствий – это заблаговременный
прогноз обстановки на пожаре.
Под обстановкой на пожаре понимается
совокупность на определённый момент времени
данных о параметрах развития и тушения
пожара
Под оценкой и прогнозированием обстановки
понимается сбор и обработка исходных данных о
пожаре, определение размеров пожара и
нанесение их на карту (план), определение
влияния поражающих факторов.

Вопрос № 1 Прогнозирование и оценка
обстановки на пожаре
включает в себя:
1.Расчет динамики развития возможного
пожара.
2.Определение температурного режима на
пожаре, тепловых потоков.
3.Прогнозирование динамики задымления в
горящем и смежных помещениях, объёмах,
территории.
4. Прогнозирование зон загазованности,
масштабов возможных разрушений,
деформаций, проливов и т.д.

Прогнозирование проводится с целью:
1. Разработка активного варианта тушения пожара
2. Разработка и обоснование способов и приемов
проведения спасательных операций, ликвидаций
последствий аварийных ситуаций, пожаров, обеспечения
безопасности людей и материальных ценностей.
3. Разработка мер по обеспечению безопасных условий
ведения боевых действий, рассмотрение вопросов охраны
труда.
4. Разработка организационно-технических мер и
инженерных решений по совершенствованию
противопожарной защиты объекта дипломного
проектирования, организации подготовки и повышения
уровня боеготовности и боеспособности пожарных
подразделений, охраняющих данный объект, а также
подразделений пожарной охраны и пожарноспасательных служб региона, города

Вопрос №2. Основные расчётные соотношения
1.)При решении пожарно – тактикческих
задач используют следующие параметры
развития пожара
линейная скорость распространения горения, Vл
(м/мин.);
Время свободного развития, св (мин)
путь, пройденный огнем, L, (м);
площадь пожара, Sп, (м2);
периметр пожара, Pп, (м);
фронт пожара. Фп, (м);
скорость роста площади пожара, Vs, (м2/мин.);
скорость роста периметра пожара,Vр,. (м/мин.);
скорость роста фронта пожара, Vф, (м/мин.).

1.1)Линейная скорость распространения горения
представляет собой физическую величину,
характеризуемую поступательным движением фронта
пламени в данном направлении в единицу времени (м/с).
Она зависит от вида и природы горючих веществ и
материалов, от начальной температуры, способности
горючего к воспламенению, интенсивности газообмена на
пожаре, плотности теплового потока на поверхности
веществ и материалов и других факторов.
Линейная скорость распространения горения характеризует
способность горючего материала к перемещению по своей
поверхности высокотемпературной зоны химических
превращений. Этот параметр зависит от многих факторов,
в частности от физикохимических свойств горючего
материала, его агрегатного состояния, условий тепло-,
массо- и газообмена на пожаре и т.п.

Линейная скорость распространения горения
определяется по по таблице (приложение №). При
определении размеров возможного пожара линейную
скорость распространения горения в первые 10 минут
от начала возникновения пожара необходимо
принимать половинной от табличного значения
(0,5Vл). После 10 минут и до момента введения
средств тушения в зону горения первым
подразделением, прибывшим на пожар, линейная
скорость при расчете берется равной табличной (Vл), а
с момента введения первых средств тушения (воды,
ВМП, ОПС и т.д.) до момента локализации пожара она
вновь принимается половинной от табличного
значения (0,5Vл).

1.2). Определение времени свободного
развития горения.
Время свободного развития пожара - временной
промежуток от момента возникновения пожара до
начала его тушения.
св.= д.с.+ сб.+ сл.+ б.р. , [мин.],
Где:
сб.=1,5 - 2 мин. – время сбора личного состава по
тревоге;
б.р. = время, затраченное на проведение боевого
развертывания (в пределах 6--8 минут).
д.с = в практических расчётах время до сообщения
о пожаре принимается в пределах 8-12 минут.

сл. = время следования первого подразделения от
ПЧ до места вызова, берется из расписания
выездов пожарных подразделений, также сл.
можно определить по формуле:
сл.=,
[мин.],
L – длина пути следования подразделения от
пожарного депо до места пожара, [км];
Vсл. - средняя скорость движения пожарных
автомобилей, [км/ч] (при расчетах можно
принимать: на широких улицах с твердым
покрытием 45 км/ч, а на сложных участках, при
интенсивном движении и грунтовых дорогах 25
км/ч).

1.3).Определение пути, пройденного огнём.
Путь, пройденный огнём, определяется по формуле в
зависимости от времени до сообщения о пожаре на ЦУС.
Путь, пройденный огнем, от места возникновения
пожара является изменяющейся величиной, зависит от
линейной скорости распространения горения и периода
распространения горения. В зависимости от времени,
путь, пройденный огнем, можно определить по одной из
формул:
если св. 10 минут:
L=0,5Vл св. , [м];
если св.>10 минут:
L=0,5Vл 1+Vл 2=0,5Vл10+Vл 2=5Vл+Vл 2 , [м],
где:
1=10 минут;
2= св.- 1= св -10, [мин.]

1.4).Определение формы площади пожара.
В зависимости от места возникновения пожара,
геометрических размеров помещения или здания,
наличия противопожарных преград, пути, пройденного
огнём, площадь пожара может приобретать различные
формы: круговую, угловую, прямоугольную. Деление
форм площади пожара на три вида является условным и
применяется для упрощения практических расчётов.
На вычерченном плане этажа (участка, цеха, здания),
где произошел условный пожар, наносится длина пути
распространения горения [L] на заданный момент
времени (в масштабе), определяется и условнографически обозначается форма площади пожара. В
данном пункте записывается форма площади пожара.

1.3).Определение площади пожара.
Площадь пожара – это площадь проекции поверхности
горения твёрдых и жидких веществ и материалов на
поверхность земли или пола помещения.
КРУГОВАЯ форма площади
пожара встречается при
возникновении горения в
геометрическом центре
помещения или в глубине
большого участка с пожарной
нагрузкой, если скорость его
распространения во всех
направлениях при безветренной
погоде приблизительно
одинакова, (Рис.1а).
Sп =k× L2 , [м2].
K= 1

УГЛОВАЯ форма характерна для пожара, который
возникает на границе большого участка с пожарной
нагрузкой и распространяется внутри сектора. Она
может иметь место на тех же объектах, что и круговая.
Максимальный угол сектора зависит от геометрической
конфигурации участка с пожарной нагрузкой и от места
возникновения горения. Чаще всего эта форма
встречается на участках с углом 90 и 180 градусов.
УГЛОВАЯ 180o,
(Рис.1б):
Sп = k× L2,
[м2 ].
K= 0,5

УГЛОВАЯ 90o,
(Рис.1в):
Sп = k× L2 [м2].
K= 0,25

ПРЯМОУГОЛЬНАЯ форма площади пожара
встречается, когда горение возникает на
границе или в глубине длинного участка с
пожарной нагрузкой (длинные здания любого
назначения и другие участки с пожарной
нагрузкой небольшой ширины) и
распространяется в одном или нескольких
направлениях: по ветру – с большей, против
ветра – с меньшей, а при относительно
безветренной погоде примерно с одинаковой
линейной скоростью.
Пожары в зданиях с небольшими
помещениями имеют прямоугольную форму,
(Рис.1г;Рис.1д).
Sп =anL, [м2 ], где:
a – ширина помещения (здания), [м];
n – число сторон распространения горения
(чаще всего «n» равно единице или двум).

В процессе развития пожара его форма может изменяться.
Так, начальная круговая или угловая форма площади
пожара через определенный промежуток времени (по
достижении горения ограждающих конструкций) перейдет
в прямоугольную:
из круговой и угловой 180 гр. перейдет в прямоугольную,
при условии: 2L a;
из угловой 90 гр.: L a.
В итоге, если пожар будет и дальше распространяться, он
примет форму данного геометрического участка. При
прямоугольной форме помещения (здания) площадь
пожара в данном случае будет равна площади этого
помещения (здания):
Sп = аb, [м2], где:
b – длина помещения (здания), [м].



зависимости (рис. 1.4)

Если пожар имеет прямоугольную форму, то
площадь пожара увеличивается по линейной
зависимости (рис. 1.6)

При горении нефти и нефтепродуктов в
резервуарах форма площади пожара
соответствует правильной геометрической
фигуре емкости (кругу или прямоугольнику), а
при разлитой жидкости – ее площади.
Форма площади развивающегося пожара
является основой для определения расчётной
схемы, направлений сосредоточения и введения
сил и средств тушения, а также потребного их
количества для осуществления боевых действий.

1.5).Определение периметра пожара.
Периметр пожара (Рп) – это длина внешней границы
площади пожара. Данная величина имеет важное
значение для оценки обстановки на пожарах,
развившихся до крупных размеров, когда сил и средств
для тушения по всей площади в данный момент
времени недостаточно. Периметр пожара определяется
по формуле, в зависимости от формы площади пожара:
круговая: Рп = 2 L, [м];
угловая 180o: Рп = L + 2L , [м];
угловая 90o: Рп = (L)/2 + 2L , [м];
прямоугольная с дальнейшим распространением
пожара: Рп = 2(a+nL) , [м];
прямоугольная без распространения пожара:
Рп = 2(a+b) , [м].

1.6).Определение фронта пожара.
Фронт пожара (Фп) -- часть периметра пожара, в
направлении которой происходит распространение горения.
Данный параметр имеет особое значение для оценки
обстановки на пожаре, определения решающего направления
боевых действий и расчета сил и средств на тушение любого
пожара. Фронт пожара определяется по формулам:
при круговой форме пожара:
Фп = 2 L , [м];
при угловой 180 форме пожара:
Фп = L , [м];
при угловой 90 форме пожара:
Фп = (L)/2 , [м];
при прямоугольной форме с дальнейшим распространением
пожара:
Фп = na , [м];
при прямоугольной форме без распространения пожара:
Фп = 0.

1.7).Определение скорости роста площади пожара.
Скорость роста площади пожара (Vs) определяется по
формуле:
Vs =
[м2/мин.],
где:
- время на каждый расчётный момент, [мин.].
1.8).Определение скорости роста периметра пожара.
Скорость роста периметра пожара (Vр) определяется
по формуле:
– при круговой и угловой форме площади пожара;
Vр =
, [м/мин.]
-для прямоугольной формы площади пожара;
Vр =
, [м/мин.]

1.9).Определение скорости роста фронта
пожара.
Скорость роста фронта пожара (Vф)
определяется по формуле:
Vф =
, [м/мин.].

2.Расчет сил и средств для тушения пожара.
Каждый пожар характеризуется своеобразной обстановкой, для
его тушения требуются различные огнетушащие средства и
разное количество сил и средств. От правильного их расчёта
зависит успех тушения любого пожара.
2.1).Определение площади тушения.
Площадь тушения (Sт) - это часть площади пожара, которую
на момент локализации обрабатывают поданными
огнетушащими средствами.
В зависимости от того, каким образом введены силы и средства,
тушение в данный момент времени может осуществляться с
охватом всей площади пожара или только её части. При этом
расстановка сил и средств, в зависимости от обстановки на
пожаре, конструктивных особенностей объекта, производится по
всему периметру пожара или по фронту его локализации. Если в
данный момент сосредоточенные силы и средства обеспечивают
тушение пожара по всей площади горения, то расчёт их
производится по площади пожара, т.е. площадь тушения будет
численно равна площади пожара.

Если в данный момент времени обработка всей площади
пожара огнетушащими средствами не обеспечивается, то
силы и средства сосредотачиваются по периметру или
фронту локализации или по фронту для поэтапного
тушения. В этом случае расчет их осуществляется по
площади тушения.
Площадь тушения водой во многом зависит от глубины
обработки горящего участка (глубина тушения), hт. [м].
Практикой установлено, что по условиям тушения
пожаров эффективно используется примерно третья часть
длины струи. Поэтому в расчётах глубина тушения для
ручных стволов принимается -5 метров, для лафетных –
10 метров.
Следовательно, площадь тушения будет численно
совпадать с площадью пожара при её ширине (для
прямоугольной формы),

не превышающих 10 метров при подаче ручных стволов,
введенных по периметру навстречу друг другу, и 20
метров – при тушении лафетными стволами. В остальных
случаях площадь тушения принимается равной разности
общей площади пожара и площади, которая в данный
момент водяными струями не обрабатывается. В жилых и
административных зданиях с небольшими помещениями
расчёт сил и средств целесообразно проводить по
площади пожара, т.к. их размеры не превышают глубины
тушения стволами.

Формулы для определения площади тушения даны в
таблице:
Форма
площади
пожара
Значение угла, град
Площадь тушения при расстановке сил и средств
по фронту
круговая
360º
Рис. 2 г.
угловая
90º
Рис. 2 д.
При L > h
Sт = 0,25π h (2L – h)
При L > 3h
Sт = 3,57h (L – h)
угловая
180º
Рис. 2 е.
При L > h
Sт = 0,5π h (2L – h)
При L > 2h
Sт = 3,57h (1,4L – h)
угловая
270º
Рис. 2 ж.
При L > h
Sт = 0,75π h (2L – h)
При L > 2h
Sт = 3,57h (1,8L – h)
См. рис. 2 а,б,в.
При b > n h
Sт = n a h
При a > 2h
Sт = 2h (а + b – 2h)
прямоугольная
При L > h
Sт = π h (2L – h)
по периметру
При L > h
Sт = π h (2L – h)
Примечание. При значениях «а», «b» и «L», равных и меньше значений,
указанных в таблице, площадь тушения будет соответствовать площади
пожара (Sт = Sп) и рассчитывается по формулам, приведенным в п.1.3.
данных методических указаний.

2.2).Определение требуемого расхода воды на
тушение пожара.
Расход огнетушащего вещества (Q;q) – это
количество данного вещества поданного в единицу
времени (л/с, л/мин., кг/с, кг/мин., м3/мин.).
Различают несколько видов расходов огнетушащего
средства: требуемый (Qтр.), фактический (Qф.), общий
(Qобщ.), которые приходится определять при решении
практических задач по пожаротушению.
Требуемый расход – это весовое или объёмное
количество огнетушащего средства, подаваемого в
единицу времени на величину соответствующего
параметра тушения пожара или защиты объекта,
которому угрожает опасность.
В практических расчётах требуемого количества
огнетушащего вещества для прекращения горения
пользуются величиной его подачи.

Интенсивность подачи огнетушащих средств (I) –
количество данного огнетушащего средства, подаваемого в
единицу времени на единицу расчётного параметра
тушения пожара.
Под расчётным параметром тушения пожара (Пт)
понимается:
- площадь пожара, Sп;
- площадь тушения, Sт;
- периметр пожара, Pп;
- фронт пожара, Фп;
- объём тушения, Vпом.
Интенсивности подачи огнетушащих средств различают:
- линейная, Iл [л/(см); кг/(см)];
- поверхностная, Is [л/(см2); кг/(см2)];
- объёмная, IV [л/(см3); кг/(см3)].

Они определяются опытным путём и расчётами при
анализе потушенных пожаров. Поверхностную и
объёмную интенсивности можно определить по
«Справочнику РТП» стр.56-57. Линейная
интенсивность определяется по формуле:
Iл = Is * hт
Требуемый расход огнетушащего средства на тушение
пожара определяется по формуле:
Qттр. = Пт * Iтр. ,
где
Пт – величина расчетного параметра тушения пожара;
Iтр.–требуемая интенсивность подачи огнетушащего
средства (Приложение № 6).

2.3). Определение требуемого расхода воды на защиту.
Требуемый расход воды на защиту выше и нижерасположенных
уровней объекта от того уровня, где произошел пожар,
рассчитывается по формуле:
Qзащтр. = Sзащ *Iтрзащ, [л/с].
где:
Sзащ – площадь защищаемого участка, [м2];
Iтрзащ– требуемая интенсивность подачи огнетушащих средств на
защиту. Если в нормативных документах и справочной литературе нет
данных по интенсивности подачи огнетушащих средств на защиту
объектов например, при пожарах в зданиях, её устанавливают по
тактическим условиям обстановки и осуществления боевых действий
по тушению пожара, исходя из оперативно-тактической
характеристики объекта, или принимают уменьшенной в 4 раза по
сравнению с требуемой интенсивностью подачи на тушение пожара и
определяется по формуле:
Iтрзащ = 0,25 * Iтр. , [л/(с*м2)]

2.4). Определение общего расхода воды.
Qтр. =
+
., [л/с].
2.5). Определение требуемого количества
стволов на тушение пожара.
где:
Nтств. =
,
qств.– расход ствола, [л/с].

2.6). Определение требуемого количества стволов на
защиту объекта.
=
При осуществлении защитных действий водяными струями
нередки случаи, когда требуемое количество стволов
определяют не по формуле, а по количеству мест защиты,
исходя из условий обстановки, оперативно-тактических
факторов и требований «Боевого устава пожарной
охраны» (БУПО).
Например, при пожаре на одном или нескольких этажах
здания с ограниченными условиями распространения огня
стволы для защиты подаются в смежные с горящим
помещения, в нижний и верхний от горящего этажи,
исходя из количества мест защиты и обстановки на
пожаре.

Если имеются условия для распространения огня по
пустотам, вентиляционным каналам и шахтам, то стволы
для защиты подаются исходя из обстановки на пожаре:
- в смежные с горящим помещения;
- в верхние этажи, вплоть до чердака;
- в нижние этажи, вплоть до подвала.
Количество стволов в смежных помещениях, в нижнем и
верхнем от горящего этажах, должны соответствовать
количеству мест защиты по тактическим условиям
осуществления боевых действий, а на остальных этажах и
на чердаке их должно быть не менее одного.

2.7). Определение общего количества стволов на тушение
пожара и защиту объекта.
Nств. =
+
2.8). Определение фактического расхода воды на тушение
пожара.
Фактический расход (Qф) – весовое или объёмное количество
огнетушащего средства, фактически подаваемого в единицу
времени на величину соответствующего параметра тушения
пожара или защиты объекта, [л/с]; [кг/с]; [м3/с]; [л/мин.];
[кг/мин.]; [м3/мин.].
Фактический расход находится в зависимости от количества и
тактико-технической характеристики приборов подачи
огнетушащих средств и определяется по формуле:
=
*qств. , [л/с].

2.9). Определение фактического расхода воды на
защиту объекта.
=
*qств. , [л/с].
2.10). Определение общего фактического расхода
воды на тушение пожара и защиту объекта.
Qф =
+
, [л/с].

11). Определение водоотдачи наружного противопожарного
водопровода.
При наличии противопожарного водопровода
обеспеченность объекта водой проверяется по водоотдаче
данного водопровода. Обеспеченность объекта считается
удовлетворительной, если водоотдача водопроводной сети
превышает фактический расход воды для целей
пожаротушения. При проверке обеспеченности объекта водой
бывают случаи, когда водоотдача удовлетворяет фактический
расход, но воспользоваться этим невозможно из-за отсутствия
достаточного количества пожарных гидрантов. В этом случае
необходимо считать, что объект обеспечен водой частично.

Следовательно, для полной обеспеченности объекта водой
необходимы два условия:
- чтобы водоотдача водопроводной сети превышала
фактический расход воды (QcетиQф);
- чтобы количество пожарных гидрантов соответствовало бы
количеству пожарных автомобилей, которые необходимо установить на
эти гидранты (NпгNавт.).
Водопроводные сети бывают двух видов:
- кольцевые;
- тупиковые.
Водоотдача кольцевой водопроводной сети рассчитывается по
формуле:
Qксети = (D/25)2 Vв, [л/с],
где:
D – диаметр водопроводной сети, [мм];
25 – переводное число из миллиметров в дюймы;
Vв – скорость движения воды в водопроводе, которая равна:
- при напоре водопроводной сети H<30 м вод.ст. -Vв =1,5 [м/с];
- при напоре водопроводной сети H>30 м вод.ст. -Vв =2 [м/с].
Водоотдача тупиковой водопроводной сети рассчитывается по формуле:
Qтсети = 0,5 Qксети, [л/с].

2.12). Определение времени работы пожарного автомобиля от
пожарного водоёма.
При наличии на объектах пожарных водоёмов и использовании их
для целей пожаротушения определяют время работы пожарного
автомобиля установленного на данный водоисточник по формуле:
=
, [мин.],
где:
0,9 – коэффициент заполнения пожарного водоема;
Vпв – объем пожарного водоема, [м3];
1000 – переводное число из м3 в литры.
Время работы пожарного автомобиля с установкой его на пожарный
водоём должно соответствовать условию:
раб.> р*Кз,
где:
р – расчётное время тушения пожара (Приложение №17).[мин.];
Кз – коэффициент запаса огнетушащего средства определяется по
таблице (Приложение №9).

2.13). Определение требуемого запаса воды для тушения пожара и
защиты объекта.
На объектах, где запас воды для целей пожаротушения ограничен,
проводится расчёт требуемого запаса воды для тушения и защиты
по формуле:
Wв = Qтф * 60 * р * Кз + Qзащф * 60 * з, [л],
где:
з – расчётное время запаса определяется по таблице (Приложение
№9),[ч].
В тех случаях, когда на объектах огнетушащих средств
недостаточно, принимаются меры к их увеличению: повышается
водоотдача путём увеличения напора в сети, организуется
перекачка или подвоз воды с удалённых водоисточников,
специальные средства доставляются с резервных складов
гарнизона и опорных пунктов тушения крупных пожаров.
При наличии рек, озёр и других естественных водоисточников с
неограниченным запасом воды обеспеченность объекта данным
видом огнетушащего средства в расчётах не проверяется.

2.14). Определение предельного расстояния подачи огнетушащих средств.
Lпред=
, [м]
где:
Нн – напор на насосе, который равен 90-100 м вод.ст.;
Нразв –напор у разветвления, который равен 40-50 м вод.ст.;
Zм –наибольшая высота подъёма (+) или спуска (-) местности на
предельном расстоянии, [м];
Zств - наибольшая высота подъёма (+) или спуска (-) ствола от места
установки разветвления или прилегающей местности на пожаре, [м];
S- сопротивление одного пожарного рукава, (Приложение №11);
Q- суммарный расход воды одной наиболее загруженной магистральной
рукавной линии, [л/с];
«20»- длина одного напорного рукава, [м];
«1,2»- коэффициент рельефа местности.
Полученное расчётным путём предельное расстояние по подаче
огнетушащих средств следует сравнить с расстоянием от водоисточника,
на который установлен пожарный автомобиль, до места пожара (L). При
этом должно соблюдаться условие:
Lпред > L

2.15). Определение требуемого количества пожарных автомобилей, которые
необходимо установить на водоисточники.
Использование насосов на полную тактическую возможность в практике тушения
пожаров является основным и обязательным требованием. При этом боевое
развёртывание производится в первую очередь от пожарных автомобилей,
установленных на ближайших водоисточниках. Требуемое количество пожарных
автомобилей, которые необходимо установить на водоисточники, определяется по
формуле:
Nавт.= ,
где:
0,8 – коэффициент полезного действия пожарного насоса;
Qн – производительность насоса пожарного автомобиля, [л/с].
При одинаковой схеме боевого развёртывания отделений на основных пожарных
автомобилях расчет проводится по формуле:
Nавт.=,
где:
Qотд. – расход огнетушащего средства, которое может подать одно отделение,
[л/с].
В любом из указанных случаев, если позволяют условия (в частности, насоснорукавная система), боевые расчёты прибывающих подразделений должны
использовать для работы уже установленные на водоисточники пожарные
автомобили. Это не только обеспечит использование техники на полную мощность,
но и ускорит введение сил и средств на тушение пожара.

2.16). Определение требуемой численности личного состава для
тушения пожара.
Общую численность личного состава определяют путём
суммирования числа людей, занятых на проведение различных
видов боевых действий. При этом учитывают обстановку на пожаре,
тактические условия его тушения, действия, связанные с
проведением разведки пожара, боевого развертывания, спасания
людей, эвакуации материальных ценностей, вскрытия конструкций
и т.д. С учётом сказанного формула для определения численности
личного состава будет иметь следующий вид:
Nл.с.=Nгдзс*3+ Nств.«А»*2+
«Б» 1 +
«Б»*2+ Nп.б.*1+
Nавт.*1+ Nл*1+ +Nсв.*1+... ,
где:
Nгдзс - количество звеньев ГДЗС («3» – состав звена ГДЗС 3
человека)
Nств.«А» - количество работающих на тушении и защите стволов
РС-70 («2» – два человека, работающих с каждым стволом). При
этом не учитываются те стволы РС-70, с которыми работают звенья
ГДЗС;

«Б» - количество работающих на тушении пожара стволов
РСК – 50 («1» – один человек, работающий с каждым стволом).

работают звенья ГДЗС;
«Б» - количество работающих на защите объекта стволов
РСК – 50 («2» – два человека, работающих с каждым стволом).
При этом не учитываются те стволы РСК-50, с которыми
работают звенья ГДЗС, производящие защиту объекта;
Nп.б. – количество организованных на пожаре постов
безопасности;
Nавт. – количество пожарных автомобилей, установленных на
водоисточники и подающих огнетушащие средства. Личный
состав при этом занят контролем за работой насосно-рукавных
систем из расчёта: 1 человек на 1 автомобиль;
Nл - количество выдвижных лестниц на которые задействованы
страховщики из расчета: 1 человек на 1 лестницу;
Nсв. – количество связных, равное количеству прибывших на
пожар подразделений.

Ориентировочные нормативы требуемой численности
личного состава для выполнения работ на пожаре
приведены в приложении № 13.
При определении численности необходимо учитывать не
только нормативы, но и также конкретную обстановку на
пожаре и условия при его тушении.
Надо иметь в виду, что в общее количество личного состава
не включается средний и старший начальствующий состав,
а также водители пожарных автомобилей.
Если требуемая численность людей превышает
возможности гарнизона пожарной охраны, недостающее
количество личного состава компенсируется путём
привлечения к действиям на пожаре добровольных
пожарных формирований, рабочих, служащих, воинских
подразделений, работников милиции, населения и других
сил.

2.17). Определение количества отделений.
При определении требуемого количества подразделений
исходят из следующих условий: если в боевых расчётах
гарнизона находятся преимущественно пожарные
автоцистерны, то среднюю численность личного состава
для одного отделения принимают 4 человека, а при
наличии автоцистерн и автонасосов (насосно-рукавных
автомобилей) – 5 человек. В указанные числа не входят
водители пожарных автомобилей.
Требуемое количество отделений на основных
пожарных автомобилей (АЦ, АН, АНР) определяется по

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Тема № 1. Теоретические основы прогнозирования обстановки на пожаре. Локализация и ликвидация пожаров. Лекция № 1. Чрезвычайные ситуации и их виды. Классификация пожаров и их характеристика. Зоны пожара. Периоды развития пожара. План лекции Введение. 1. Чрезвычайные ситуации и их виды. 2. Классификация пожаров и их характеристика. 3. Зоны пожара. Периоды развития пожара. 900igr.net

2 слайд

Описание слайда:

Чрезвычайная ситуация - это состояние, при котором в результате негативных воздействий от реализации какой-либо опасности на объекте экономики, определенной территории или акватории нарушаются нормальные условия жизни и деятельности людей, возникает угроза их жизни и здоровью, наносится ущерб имуществу населения, экономике и окружающей природной среде.

3 слайд

Описание слайда:

1.Чрезвычайные ситуации техногенного характера 2.Чрезвычайные ситуации природного характера 3.Чрезвычайные ситуации биолого-социального характера КЛАССИФИКАЦИЯ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ 4.Террористические акции

4 слайд

Описание слайда:

Чрезвычайные ситуации техногенного характера 1.1. Транспортные аварии (катастрофы) 1.2. Пожары (взрывы с последующим горением) 1.3. Аварии с выбросом (угроза выброса) аварийно химически опасных веществ (АХОВ) 1.4. Аварии с выбросом (угроза выброса) радиоактивных веществ (РВ) 1.5. Аварии с выбросом (угроза выброса) биологически опасных веществ (БОВ) 1.6. Внезапное обрушение сооружений 1.7. Аварии на электроэнергетических системах 1.8. Аварии на коммунальных системах жизнеобеспечения 1.9. Аварии на очистных сооружениях 1.10. Гидродинамические аварии

5 слайд

Описание слайда:

Чрезвычайные ситуации природного характера 2.1. Геофизические опасные явления 2.2. Геологические опасные явления 2.3. Метеорологические (агрометеорологические) опасные явления 2.4.Морские гидрологические опасные явления 2.5. Гидрологические опасные явления 2.6. Природные пожары

6 слайд

Описание слайда:

Чрезвычайные ситуации биолого- социального характера 3.1. Инфекционная заболеваемость людей 3.2. Инфекционная заболеваемость сельскохозяйственных животных 3.3. Поражение сельскохозяйственных растений болезнями и вредителями Террористические акции

7 слайд

Описание слайда:

8 слайд

Описание слайда:

9 слайд

Описание слайда:

Классификация ЧС по Постановлению Правительства РФ от 13 сентября 1996 года № 1094 Ранг 1 2 3 4 5 6 Определение ЧС Локальная ЧС Местная ЧС Территориаьная ЧС Региональная ЧС Федеральная ЧС Трансграничная ЧС Полный ущерб, МРОТ <1 тыс. 5тыс- 0,5 млн. 0,5 млн.- 5 млн >5 млн. 1-5 тыс. <10 10-50 50-500 50-500 >500 <100 500-1000 >1000 300-500 100-300 Уровень управленияЧС Руководство организации Органы местного самоуправления Исполнительная власть субъекта РФ Исполнительная власть субъектов РФ Исполнительная власть субъектов РФ Правительство РФ

10 слайд

Описание слайда:

Таблица 1.1 Классификация опасностей и рисков по источникам их возникновения и поражаемым объектам Источник Объект (реципиент) Природный Социальный Техногенный Природный Природный Природно-социальный Природно-техногенный Социальный Социо-природный Социальный Социо-техногенный Техногенный Техно-природный Техно-социальный Техногенный

11 слайд

Описание слайда:

Таблица 1.2. Классификация катастроф по масштабу Тип Периодично-сть Ущерб, дол. Число жертв, чел. Объекты Планетарная Гибель жизни Столкновение с крупным астероидом, война с применением ОМП Глобальная 30 - 40 лет 109 - 1010 104 – 2*106 Ядерные, ракетно-космические, военные Национальная 10 - 15 лет 108 – 109 103 – 105 Ядерные, химические, военные Региональная 1 - 5 лет 107 – 108 102 – 104 Химические, энергетические, транспортные Местная 1 - 6 мес. 106 – 107 101 – 103 Технические Объектовая 1 - 30 дней 105 – 106 100 – 102 Технические

12 слайд

Описание слайда:

Таблица 1.3. Критерии W классификации ЧС по степени тяжести Параметр Wr Класс ЧС r Наименование Локальная Местная Террито- риальная Региона-льная Феде-ральная Транс-граничная 1 К-во пострад., чел. ≤10 10< W1≤50 50500 2 К-во людей с наруш. условиями жизнедеят., чел. ≤100 100103 3 Ущерб, мин. разм. ≤103 103 4 Размер зоны 0≤W4л W4лW4ф Выделение средств на ликвидацию ЧС Объект Органы местного самоуправления Субъект РФ Субъекты РФ Правительство РФ

13 слайд

Описание слайда:

Табл. 1.4 Динамика пожаров и потерь в РФ Годы Число пожаров, тыс. Прямой ущерб, млрд. руб. Материальные потери, млрд. руб. Число погибших, тыс. чел. Пострадало, тыс. чел. 1995 294,1 0,8 28 14,9 13,5 1996 294,8 1,5 29,1 15,9 14,4 1997 273,9 1,4 25,1 13,9 14,1 1998 265,9 1,5 26,6 13,7 14,0 1999 259,4 1,8 27,0 14,9 14,5 2000 246,0 1,8 23,8 16,3 14,2 2001 246,3 2,6 45,5 18,3 14,2 2002 259,8 3,4 59,5 19,9 14,4 2003 239,3 4,2 72,6 19,27 14,1 2004 231,4 5,8 101,7 18,37 13,7

14 слайд

Описание слайда:

Группы пожаров (по виду газообмена) Общая классификация пожаров На открытых пространствах В ограждениях Классы пожаров (по виду горючих веществ) Класс А Твердые горючие вещества Класс В ЛВЖ и ГЖ Класс С Горючие газы Класс Д Горючие металлы и их сплавы Класс Е Электрооборудование под напряжением Сочетание Пожаров различных классов Распространяющиеся Виды пожаров Нераспространяющиеся Наземные Подземные Надземные(воздушные) Частные классификации пожаров Лесные пожары Пожары в резервуарах Пожары фонтанов Другие виды пожаров

15 слайд

Описание слайда:

ОБЩАЯ КЛАССИФИКАЦИЯ ПОЖАРОВ По условиям газообмена и теплообмена с окружающей средой все пожары разделяются на два обширных класса: I КЛАСС ПОЖАРЫ НА ОТКРЫТОМ ПРОСТРАНСТВЕ II КЛАСС ПОЖАРЫ В ОГРАЖ- ДЕНИЯХ

16 слайд

Описание слайда:

ПОЖАРЫ НА ОТКРЫТОМ ПРОСТРАНСТВЕ I класс: РАСПРОСТРАНЯЮЩИЕСЯ НЕРАСПРОСТРАНЯЮЩИЕСЯ МАССОВЫЕ

17 слайд

Описание слайда:

РАСПРОСТРАНЯЮЩИЕСЯ ПОЖАРЫ класс Iа Пожары с увеличивающимися размерами (шири-на фронта, периметр, радиус, протяженность флангов пожара и т.д). Пожары на открытом пространстве распространяются в различных направлениях и с разной скоростью в зависимости от условий теплообмена, величины разрывов, размеров факела пламени, критических тепловых потоков, вызывающих возгорание материалов, направления и скорости ветра и других факторов.

18 слайд

Описание слайда:

НЕРАСПРОСТРАНЯЮЩИЕСЯ ПОЖАРЫ класс I б Пожары, у которых размеры остаются неизменными.Локальный пожар представляет собой частный случай распространяющегося, когда возгорание окружающих пожар объектов от лучистой теплоты исключено. В этих условиях действуют метеорологические параметры. Так, например, из достаточно мощного очага горения огонь может распространяться в результате переброса искр, головней в сторону негорящих объектов.

19 слайд

Описание слайда:

МАССОВЫЕ ПОЖАРЫ класс I в Это совокупность сплошных и отдельных пожаров в зданиях или открытых крупных складов различных горючих материалов. Под отдельным пожаром подразумевают пожар, возникший в каком-либо отдельном объекте. Под сплошным пожаром подразумевается одновременное интенсивное горение преобладающего числа объектов на данном участке. Сплошной пожар может быть распространяющимся и нераспространяющимся.

20 слайд

Для оценки возможной обстановки на пожаре существует множество показателей. Особое значение среди них представляют геометрические и физические параметры пожара, такие как: площадь, периметр, фронт пожара; температура пожара.

Прогнозирование возможной обстановки на пожаре осуществляется по известным формулам на два момента времени:

1. На момент подачи огнетушащих средств первым прибывшим подразделением (время свободного развития пожара) – , мин;

2. На момент локализации пожара – , мин (подача огнетушащих средств последним прибывшим подразделением по вызову № 2).

В расчетах линейная скорость распространения горения – принимается равной:

– при значении времени развития пожара мин половине ее табличного или заданного значения ();

– при значении мин и до введения первых средств на тушение пожара ее табличной или заданной величине ();

– после введения стволов на тушение половине ее табличного или заданного значения ().

Последовательность расчета:

1. Прогнозирование параметров пожара на момент подачи огнетушащих средств первым прибывшим подразделением на тушение пожара.

1.1. Определяем время свободного развития пожара – , мин.:

где – время с момента возникновения пожара до сообщения о нем

(Приложение 1);

– время обработки диспетчером вызова и подачи сигнала тревоги;

– время сбора и выезда пожарных по тревоге;

– расчетное время прибытия первого пожарного подразделения к

месту пожара (табл. 1 Приложения 2);

– время развертывания пожарного вооружения первым прибывшим

Подразделением (Приложение 1).

Время () – принимается равным 1 минуте.

1.2. Определяем путь, пройденный огнем за время свободного развития пожара – , м:



где – линейная скорость распространения горения, м/мин – задается в

задании (Приложение 1).

1.3. Определяем форму площади пожара.

На плане объекта, выполненного в масштабе на формате листа А3 (лист 1 графической части), от очага пожара откладываем полученное значение в направлениях развития пожара, принимая, что огонь распространяется во всех направлениях равномерно с одинаковой скоростью.

При достижении фронтом пожара стен помещения геометрическая форма площади пожара изменяется с угловой формы на прямоугольную форму.

При выходе пожара за пределы помещения, в котором он произошел, рассчитываем путь, пройденный огнем через дверные проемы – , м:

– если при переходе формы площади пожара из угловой формы в прямоугольную форму дверной проем находится в пределах фактической площади пожара –

, (3)

где – проекция расстояния от очага пожара до центра дверного проема

на вертикальную или горизонтальную ось, м;

– если при переходе формы площади пожара из угловой формы в прямоугольную форму дверной проем находится в пределах приращенной площади пожара –

, (4)

где – расстояние от очага пожара до стены помещения, при котором

происходит изменение формы площади пожара, м.

Механизм перехода огня из одного помещения в другое через открытые дверные проемы подробно изложен в «Сборнике задач по основам тактики тушения пожаров» .

Штриховкой показывается площадь пожара.

1.4. В зависимости от формы площади пожара по известным математическим формулам (Приложение 5) рассчитываем основные геометрические параметры пожара (площадь, периметр, фронт пожара) для оценки обстановки на заданный момент времени.

1.5. Полученные данные: времени развития пожара, пути пройденного огнем за время развития пожара, площади, фронте, периметре пожара заносятся в табл. 1.

2. Прогнозирование параметров пожара на момент локализации пожара.

2.1. Определяем время локализации пожара – , мин.:

, (5)

где – время развития пожара до момента локализации пожара;

– расчетное время прибытия последнего пожарного подразделения

к месту пожара по вызову № 2 (табл. 1 Приложения 2);

– время развертывания пожарного вооружения последним

прибывшим подразделением по вызову № 2 (Приложение 1).

2.2. Определяем путь, пройденный огнем за время развития пожара до момента его локализации – , м:

2.3. Определяем форму площади пожара.

На плане объекта, выполненного в масштабе на формате листа А3 (лист 1 графической части), от очага пожара откладываем полученное значение в направлениях развития пожара, принимая, что огонь распространяется во всех направлениях равномерно с одинаковой скоростью. При выходе пожара за пределы помещения, в котором он произошел, рассчитываем путь, пройденный огнем через дверные проемы – , м (см. п. 1.3).

На полученную площадь пожара наносим штриховку. Частота штриховки должна отличаться от частоты штриховки, нанесенной на площадь пожара при свободном времени развития пожара.

2.4. В зависимости от формы площади пожара по известным математическим формулам (Приложение 5) рассчитываем основные геометрические параметры пожара (площадь, периметр, фронт пожара) для оценки обстановки на заданный момент времени.

2.5. Полученные данные: времени развития пожара, пути пройденного огнем за время развития пожара, площади, фронте, периметре пожара заносятся в табл. 1.

Таблица 1

Данные параметров по развитию пожара

Примеры по определению основных геометрических параметров развития пожара приведены в Приложении 14.

2.ПРОГНОЗИРОВАНИЕ ПОЖАРНОЙ ОБСТАНОВКИ.
Прогнозирование пожарной обстановки имеет ряд существенных методологических отличий от порядка прогнозирования химической и инженерной обстановки, обусловленных спецификой развития такого бедствия, каким является пожар.
Прогнозирование пожарной обстановки целесообразно осуществлять по методике последовательного определения основных показателей, характеризующих развитие пожаров.
1.Определение районов и участков опасных в отношении быстрого распространения огня.
При взрыве ГВС выделяют три основные зоны возможных пожаров :

  • зоны отдельных пожаров;
  • зоны сплошных пожаров;
  • зоны пожаров в завалах.

Зоны отдельных пожаров охватывают районы, в которых пожары возникают в отдельных зданиях и сооружениях. Пожары на территории рассредоточены. В этой зоне возможна быстрая организация тушения пожаров в течение до 20 минут после начала пожара.
Зоны сплошных пожаров могут возникнуть в зонах средних и сильных разрушений, когда пожары охватывают более чем 50% зданий в зоне в течении 1 – 2 часов. Далее возможно распространение огня на остальные здания и сооружения - огнем может быть охвачено до 90% строений и более.
В зонах сплошных пожаров невозможен проход или нахождение сил реагирования без проведения специальных противопожарных мероприятий по локализации и тушению пожаров.
Длительность сплошных пожаров может изменятся в широких пределах в зависимости от огнестойкости, плотности застройки и метеоусловий. Считается, что в кварталах (районах) значительной площади (более 2км2 и более) при застройке зданиями IY и Y степени огнестойкости, длительность сплошного пожара может составить 10 ч., а при застройке зданиями III степени- до 2-х суток.
Зоны пожаров в завалах распространяются на территорию части зоны сильных и всей зоны полных разрушений от взрыва ГВС.
Для этой зоны характерно сильное задымление и продолжительное горение в завалах, интенсивное выделение продуктов неполного сгорания и токсичных веществ. Значительное количество продуктов сгорания и теплового разложения, входящих в состав дыма обладают токсичностью. К ним относятся окись углерода углекислый и сернистый газы, хлор окислы азота,сероводород и другие.
Продолжительность горения и тления в завалах может составить несколько суток.
Особое место при прогнозировании пожарной обстановки занимает определение возможных районов образования огневых штормов.
Огневой шторм - это особый вид сплошного пожара. Огневой шторм возможен на больших площадях (более 2 км2) при компактной застройке. Из-за интенсивных конвективных потоков горячего воздуха на высоте до 5 км происходит активный приток свежего воздуха к центру шторма со скоростями порядка 10 – 15 м / сек (до 50 км \ час).
2.Определение скорости и направления распространения пожаров, времени его подхода к объекту (рубежу).
Направление распространения пожаров определяется преимущественным направлением ветра в приземном слое, а его скорость существенно влияет на скорость распространения пожаров.
Так, при скоростях ветра 3 - 5 м \ сек (10 – 20 км \ час) скорость распространения огня по ветру для зданий IY и Y степени огнестойкости может составлять 120 - 300 м \ час, а для зданий II и III степени – 60 – 120 м \ час, при скорости ветра 10 – 20 м \ сек (40 – 70 км \ час) скорость распространения огня увеличивается в 2 - 3 раза.
Следует отметить, что пожары распространяются не только в сторону ветра, но и в стороны перпендикулярные направлению ветра и даже навстречу ветру, причем скорость распространения огня против ветра всего лишь в 3 - 4 раза меньше, чем по ветру.
Время подхода фронта огня к заданному рубежу (объекту) определяется, исходя им прогнозируе мой скорости его распространения
3.Определение параметров развития пожаров.
Показатели, характеризующие развитие пожаров во времени от начала возникновения до полной ликвидации называется параметрами развития пожара.
В начальной стадии развития пожара происходит увеличение площади горения с выгоранием горючих материалов. Большинство пожаров на объектах с наличием твердой горючей основы характеризуется сравнительно медленным нарастанием температуры начальной стадии горения. Однако после достижения температуры равной 3000 С самовоспламеняются органические материалы и вещества и начинается стадия более интенсивного развития пожаров.
Ориентировочно можно считать, что время развития пожара в зданиях до его полного охвата огнем составляет:
-для зданий IY и Y степени огнестойкости - 30 - 60 мин.
-для зданий III степени огнестойкости, высотой до 2-х этажей – 1 ч., высотой до 5 этажей – 1 - 1,5 часа
-для зданий II степени огнестойкости,высотой 5этажей – 3 - 4часа.
для оценки обстановки и принятия решения на ликвидацию пожара большое значение имеет качественное прогнозирование развития параметров пожара. Одним из них является площадь горения (пожара), его периметр и скорость развития. Указанные параметры, в основном, определяют обстановку и лежат в основе расчёта сил и средств, необходимых для ликвидации пожаров.
В зависимости от расположения источника горения, конфигурации зданий и сооружений, метеоусловий различают три основных формы площади пожаров – круглая, угловая и прямоугольная. Для прогнозирования возможной площади пожара за основу берётся линейная скорость распространения горения.
Скорость распространения горения может меняться в широких пределах, в зависимости от назначения зданий, сооружений, конструкций. Ориентировочно она может составлять:

  • для административных зданий – 1 – 1,5 м. / мин.
  • для жилых домов – 0,5 – 0,8 м / мин.
  • для коридоров и галерей – 4 – 5 м / мин.
  • для торговых предприятий – 0,5 – 1,2 м / мин.
  • для школ и лечебных учреждений в зданиях I и II степени огнестойкости 0,6 – 1,0 м / мин., в зданиях III IY степени – 2,0 – 3,0 м / мин.

Площадь пожаров прогнозируется, как правило на момент прибытия основных сил противодействия и в дальнейшем уточняется.
Площади возможного развития прогнозируются и в дальнейшем уточняются
Площади возможного развития пожаров определяются по следующим зависимостям:

  • для круглой формы – Sп = П ´ R2
  • для угловой формы – Sп = 0,5 ´ a ´ R2
  • для прямоугольной формы – Sп = а ´ в, где

R - радиус развития горения на момент расчётов
a - угловой размер сектора горения в радианах
а,в - стороны прямоугольника при развитии пожара
3. Ориентировочный объём работ по локализации сплошных пожаров и необходимого количества сил и средств для их выполнения.
При расчёте сил и средств необходимо учитывать специфику горючей загрузки, вид пожара и сложившуюся обстановку.
Расчёт сил и средств может производится аналитическим методом, с использованием справочных таблиц, графиков и специальных линеек. В общем виде расчёт рекомендуется производить по следующей схеме:

  • Определение формы площади пожара, к моменту его локализации.
  • Определение принципа расстановки сил и средств для тушения пожара.
  • Определение площади тушения пожара.
  • Определение необходимого расхода огнетушащих средств на тушение пожара и защиту объектов, которым угрожает опасность.
  • Расчёт необходимого количества технических средств подачи огнетушащих средств для тушение пожара и защиты объектов.
  • Определение фактического расхода огнетушащих средств.
  • Расчёт необходимого запаса огнетушащих средств.
  • Определение необходимого количества пожарных машин основного назначения.
  • Определение предельных расстояний по подаче воды от пожарных машин, установленных на водоисточниках.
  • Определение численности личного состава, необходимого для тушения пожара и защиты населения и объектов.

Расчёты по приведенным методикам проводятся специалистами пожарных служб и подразделений, и закладывается в основу последующих мероприятий по ликвидации пожара.